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Ward Identity for Gauge Field in Stochastic 
Quantization with Nonlocal Form Factors 
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In the framework of the stochastic quantization method with nonlocal form 
factors, two-, three- and four-point correlation functions for the Yang-Mills field 
and/3 function are calculated. A Schwinger-Dyson renormalization program is 
formulated for regularized QCD 4. It is shown that the gauge fixing due to 
Zwanziger does not break gauge invariance and that the Ward identity is also 
fulfilled. 

1. INTRODUCTION 

In recent years, interest has significantly increased in the study of  
stochastic quantization (Parisi and Wu, 1981) due to the fact that it has 
been possible to apply an idea of nonequilibrium statistical mechanics to 
different theoretical field models (e.g., Migdal, 1986). It turns out that this 
alternative method of quantization of physical systems (besides the usual 
formalisms of the canonical quantization and the integral over paths) leads 
to new ideas and methods in quantum field theory. As mentioned by Bern 
et aL (1987), these achievements include Zwanziger's gauge fixing 
(Zwanziger, 1981), stochastic stabilization (Greensite and Halpern, 1984) 
and regularization (Bern et al., 1987; Niemi and Wijewardhana, 1982; Breit 
et al., 1984; Namiki and Yamanaka, 1984; Bern, 1985), the QCD4 maps 
which run in ordinary time (Glaudson and Halpern, 1985; Bern and Chan, 
1986), and also numerical applications of  the Langevin equation in lattice 
gauge theory (Hamber and Heller, 1984; Batrouni et al., 1985). 

In a previous paper (Dineykhan and Namsrai, 1988) we studied the 
problem of  regularization of  stochastic equations of the Langevin and 
Schwinger-Dyson type within nonlocal quantum field theory (Efimov, 1977, 

~tnstitute of Physics and Technology, Academy of Sciences of Mongolian People's Republic, 
Ulan-Bator, Mongolia. 

1483 
0020-7748/89/1200-1483506.00/0 �9 1989 Plenum Publishing Corporation 



1484 Dineykhan and Namsrai 

1985). The basic idea of our approach was as follows: Instead of the usual 
equations of the stochastic scheme, the modified versions with nonlocal 
white noise 

~7(x, t) ~ A(x, t) = I (dy) K ( x - y ) r l ( y ,  t) (1) 

were considered, where K ( x ) = K ( D ) 6 4 ( x )  is the nonlocal generalized 
function constructed by Efimov (1977); t is the fictitious parameter, usually 
called the "fifth time." Here r/(x, t) is the local white noise satisfying the 
condition 

(rl(x , t )r l(x '  , t'))n = 2 t ~ ' ( x - x ' ) 6 ( t - t ' )  

It turns out that the nonlocal white noise (1) plays a double role in the 
scheme of the stochastic quantization method: it controls the quantum 
behavior of the physical systems and at the same time it makes the theory 
finite in each order of perturbation. 

This method has been employed in the study of scalar and gauge fields 
and also in scalar electrodynamics. This is the second in a series of papers 
studying covariant-nonlocal regularization of continuum quantum field 
theory and is devoted to the renormalization problem and to the calculation 
of the /3 function for four-dimensional QCD. Here we use the method 
expounded by Bern et al. (1987), where it was used for continuum regulariz- 
ation with meromorphic functions. 

In Section 2 the renormalization of the Schwinger-Dyson equation in 
four-dimensional QCD is studied. The next section is devoted to the calcula- 
tion of two-, three-, and four-point diagrams and to the definition of the 
renormalization constants. Our results show that in the given scheme the 
Ward identity is fulfilled. 

2. THE R E N O R M A L I Z A T I O N  OF THE S C H W I N G E R - D Y S O N  
EQUATION 

The basic equations of the stochastic quantization method are the 
Langevin and Schwinger-Dyson equations. These equations define the 
behavior of the field function and their interactions and also the dependence 
on white noise. The field function, interaction constant, and parameter of 
gauge fixation in these equations are bare. The bare constant of interaction 
go and fixed gauge parameter So and also the field function A~ are usually 
expressed through the physical constants (g, a, AT~,): 

go = ZgZ A3 / 2 g 

A~(x )  = ZIA/ZA~m,(X ) (2) 

ol o = l ~ l  o 
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where the constants Zg, Z4, and Z~ correspond to the renormalization of  
the interaction constant, wave function, and gauge fixation, respectively. 
The Langevin equation for the gauge field is written as 

OAth(x, t) ~S t_D~bZb(x, t)+ f (dy) .b b Kxy(A)n.(y, t) (3) 
0 t ~ A ~  J 

Let us consider each term in (3) separately, Thus, the first term in (3), 
6S/6A, is expressed by the action S, which is defined in the form 

S= f dx~ (x )  

where ~T is the Lagrangian of  the gauge field 

= _ ! ~  ~ (4) 4Jr ~xu~t ~ ,  

a 
Here F .~  is the stress tensor of  the Yang-Mills field: 

F ~  = O~A~, - OuA~ - ,.~b~--b - - ~  a -l-goJ .a..,%, (5) 

Then, in accordance with (2) and (5), we get from (3) 

= & d x ) +  

where S~R is the renormalized Lagrangian: 

~ f f  R 1 a a a b c  b a c =~aR~l~T~vag.-kgf AR~(c3.AR~)AR~ 
.~_1  2 , ' a b c r a n m - - b  - - c  A n  a m  

zg J y ARl~ZqtRv/-ISlx/-]tRv (6) 

and ~CT is the corresponding counterterm written in the standard form: 

a a a b c  b a c ~ c r  = - �89 1)AR.IN T..AR~+ (Zg - 1)gf AR.(O.AR~)AR~ 

. . . . . .  . . . . . .  

4 \ZA l ] g  J J -an.~R~ARUAn~ (7) 

In accordance with this, the action is also made up of two pasts: S =  
SR + Scr. Here we have used the notation employed in our previous paper 
(Dineykhan and Namsrai, 1988). The second expression in (3) is the 
so-called Zwanziger term (Zwanziger. 1981) and defines the gauge fixation. 
Due to (2) and after some simplification one gets 

D ~ b z b  = [ t ~ a b o .  a b c  c b a +gof  A . ( x ) ]Z  = ZA~/2(Z;+Zcr)  

where 

1 a b  b Z• --(6 Or+ ~ab . . . . .  a = gJ "aRM O.An~ (8) 
OL 
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1 
ZcT -__rtzz_l)a,,bG,+g(Z_z~,_._,, - -  , - u -~  ,,b~ c b " = - 1 ) f  A R . ] 0 ~ A R ~  (9) 

O/ 

In our case, the distribution of  the white noise is the entire analytic function 
and is caused by the quantum behavior of the system; it consists of  two parts: 

K x y ( A  ) = Kxy(ACT) 
where the renormalized part takes the form (see Dineykhan and Namsrai, 
1988) 

ab ab K=y(AR) = Kxy (K]) 

+ g [K(~)([3)F~H(r~) + H([3)F~K( ' ) (K]) ]~  

s 
+ 2 [K(')(~)I'~H([3)+H(~)F]K(')(D)]~ 

s 
+ 6 [K(2)(~)FIRH([])F'RH(D) 

+ H(~)FI~K(~(D)F,~H(D) 

+ H(D)F ~ H(D)F~/((2)(~)]~ 

and corresponding counterterm reads 

(10) 

Kxy"b (AcT) = �89 \zA(Zg_ 1~/[K")(C])F ~ H(D)+ H(M)F," K (')(~)] ~ 

g2 [ Z 2 
- l )  [K(')(E3)FRH(E3) + H(m)FRK~a)(~)]~y b 

g 2 (  z 2  1)[K(Z)(IN)FRH(E2)FRH(E]) 
+ H(D)r,"K(2)(D)r ~/-/([]) + t-/([])r,"/4(c])r,"K(2~([])]~"~ 

(11) 

where KU)(F-]) is an entire analytic function of  the concrete type as shown 
in (Efimov, 1977); the renormalization vertexes F R and F R are defined in 
the following way: 

( rR ' iab  2 abe c c 
- - l  ]xy I f  [ARu(X)Ot~ - 'FO~AR~(X) ]  R(4) ~(x--y) 

(12) (pR'~ab 2 amn ncb m c -2 ~xy=lf  f Am,(X)ARu(X ) 6(4)(x-y) 
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Table I 

D i a g r a m  type  E x p r e s s i o n  

a q ~ b 6ab[(1  --ZA)q2c~q "- (1/o~ -- 1 + Za) 

/ ~  ~" x (1 - Z~/a)q~q~] 
# p 

q2 

# ~ %  q3 

a s 

p 

o /r c 

# q~ q3 P 

- 1 ) T ~ .  o 

+ I / ~ ( z . G  ~ ;  - 1 ) Z,,~p] 

1 2 abcd  ~ ( Z d Z A  - 1) Q,~, 

ig( Z J  ZA -- 1) ffb~12( q~ -- q3)~ 

2 2 2 a n d  nbc  g ( Z J Z  A - 1 ) f  f 

X 12 tSap t~u~ 
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Making the necessary calculations, taking account of (6), (8), and (10), we 
obtain the renormalized Schwinger-Dyson equations in the x space: 

6AR• 

6 ba ] $F[AR]~ 
xS--~R Kxy(AR) 8AaR" / = 0  (13) 

Using equation (13), one should calculate the correlation function which 
determine two-, three-, and four-point renormalization. On the other hand, 
to determine the renormalization constants Zg, ZA, and Z~, we must calcu- 
late the corresponding counterterm diagrams. In accordance with (7), (9), 
and (11) it is simplest to calculate the vertex diagrams and these expressions 
are shown in Table I. Here we use the following tensor notation: 

~ a b c  / --~zT, pTabc ~ l~z~,p~.ql, q2, q3) 
= - igf~b~[(q~ -- q2)pS~.~ + (q2 -- q3).6~p+(q3 -- q,).6~p] 

z a b c  __ ~ a b c  r 
. ~  = z .~p tq l ,  q2, q3) 

= - igffbC[q3o6~ -- q2~6.0 ] (14) 

Qabcd = -- g 2[ fabnfcdn(  t~.pt~v" -- t~.n6~p ) izl,p'q 

+ ff~"fbd"(6,..~o. -- ~. ,  6.p) +fad"ffb"(sm,8~, ~ - 6,~8,,)]  

3. TWO-POINT RENORMALIZATION 

Let us consider two-point renormalization for the Yang-Mills field. 
From (13) one can determine for the Schwinger-Dyson equations the 
correlation (A~R~(ql)AbR~(q2)). In Dineykhan, Namsrai (1988) we proposed 
a method to calculate the correlation function in the framework of  the 
stochastic quantization method with nonlocal form factors. Details of  the 
concrete calculations are not given here. Two-point renormalization 
diagrams are presented in Figure 1. The contributions corresponding to the 
diagram on Figure la  are written in the following way: 

(A~R~(qa)Ab (q2)) t~d(qlq_ ab = q2)l'IR~(ql) 

where 

--~2 f (dp) V(p212) 1 [ ~ 2 r ~ , ~ ( q , p , p _ q  ) n~(q)= p~ p 2 + q 2 + ( p _ q ) 2  

1 arnn . .,.b . _ q ) + F j,ot3 ( q, p _ q ' m.b X l ~ . ~ t q - - p , p ,  -~ - p ) F p t ~ ( q - p ,  p, - q )  

1 amn bmn 1 
+ (p _ q)2 r~p~ (q - p ,  p, -q)I" ~o~ ( -q ,  p, q - p )  j (15) 
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Fig. I. 

-, a ~ . 8  

"" P-q" 

(a) Two-point renormalization diagrams. (b) Two-point counterterm diagrams. 

and the three-gluon vertex FbTt~ is defined in the standard way (see Ramond, 
1981) 

. . . .  ) ~o~tql, q2, q 3 ) - 2 \  .p~+ Z~'o~ (16) 

The V(p212) are the nonlocal form factors (Efimov, 1977). Using the Mellin 
representation 

1 f-~-i~d~ v(~) (12p2)~, 0 < f l < l  (17) V(p212) = ~-~ a-t~+i~ sin ~------~ 

and making a simple calculation, from (15) one can obtain easily 

rI,b , , gZ6abN ln tz212 { _ 8  ~ + 4 3  q~q~,~ 
R,.,,tq)- 16~r 2 q2 \ 3 ~" 24 q2] (18) 

where N is of the order of SU(N) group symmetry and/x is an undetermined 
parameter which corresponds to the choice of renormalization scale. 
The counterterm contribution is determined by the diagram shown in 
Figure lb. After some calculations we have 

IIcr,,~,,(q)=--~ (I-ZA)~a~+ ZA(1-Zo,) (19) 

Using (18) and (19) and requiring that the R sum plus the CT sum equals 
zero gives immediately 

8 g2N In 121z 2 
Z(~ )= 1 3 16~r 2 

Z ~  ~ = 1 -~ 43 g2N In 121 ~2 
24 167r 2 

(20) 
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4. T H R E E - P O I N T  R E N O R M A L I Z A T I O N  

Let us consider the three-point renormalization in the momentum space. 
From (13) the Schwinger-Dyson equation gives for the three-point correla- 
tion function 

a l a 2 a  3 G~t~2~3( ql, q2, q3) 

~-- (AR' (ql)An~2(q2)AR~3(q3)) 
1 

- q21+ q2~ + q~ 

x f (dp,)(dp2)[g4(q,-p,-P2) 

~ a l b c  / • J~,o~(-q~ ,P~ ,P2)(A~R~(p2)AbRo(pl)AR~2(q2) 
a 3 �9 x Age3(q3)) + cyclic perm in (q)] 

1 I + q12+ q~+q~ (dpl) (dp2) (dp3) [~4(p,+p2+p3-q~) 

a c n m  m n c a 2 a 3 • F ~v~ (AR~(p3)AR~(p2)ARv(p~)AR~2(q2)AR~(q3)) 

+ cyclic perm in (q)] (21) 

where g4(p) = (2~r)4(p) and the four-gluon vertex is defined in the standard 
way (Ramond, 1981) as 

F a l  a 2 a 3 c / 4  - -  1 f ) a  1 a 2 t / 3 a  4 (22) 
lpl/~2V31j 4 - -  6 ~ , 1  ~21J3V4 

From (21) it is shown that the three-point correlation functions are expressed 
through four- and five-point correlation functions. If we restricted ourselves 
to only the first order of g, then from (21) we have 

G ( l ) a l a 2 a 3 ( , . ~  ~,~:~3 t'tl, q2, q3) 
284(q~+q2+q3) [ 1 

- : 2 --5--5 r " ~ l ~ ( q , ,  q2, q3) ql+q2+q 2 q2q3 

+ q lTq~ Fa~2a~l( q2 , q3, ql) + ~ F~3~( q3 , ql , q2) ] 

This expression determines the general structure of the three-point renor- 
malization, and corresponding diagrams are shown in Figure 2. Three-point 
renormalization is determined by the diagrams represented in Figures 3-7. 
Four- and five-point correlation functions entering in (21) may be expressed 
by six-point correlation functions. Using (21), one can obtain the expressions 
corresponding to the diagrams shown in Figures 3-5. In particular, the 
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9~ a~ 

9 3 ~,Orz 

Fig. 2. 

-<'-'<i $ 5 

Three-point structural diagrams. 

p-~, -',~~ -- % 

a) 

"-6bll O ~  

Fig. 3. 

c) 

Three-point renormalization vertex diagrams. 

express ion  co r respond ing  to the d iag ram shown in Figure 3a is wri t ten in 
the fol lowing form:  

G(3a)ala2a3[ ~1~3 ",ql, q2, q3) 

8 1 F V(p21e) 

J 2 2 ql+q2+q~ q2q2 (dp) p2 

1 
~ a l b l b  2 / Xl,,,,l,~z~q~,--Pa,P--ql) p2+(p_ql)2 + q2+q 3 2  2 

1 
~ ,  ~ --p, q2+p, q3) pZ+(p+q2)2+q~+2q . 

x r~176 ~, ( -  (23) ~ ~ ,  P - q2, q2, P) 

a,, 

a) 8) 

Fig. 4. Three-point renormalization vertex diagrams. 
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Fig. 5. Three-point renormalization tree-structure diagrams. 

Using the representation (17) and according to (16) and after some sim- 
plification and integration over (dp), we have 

G~J~2%(q2, q2, q3) 

ig3fala2a3N In 12/x 2 
167r2q2q~ q~+q2_q~ 

7 49 31 x [~q2~6~ ~ + ~q2 ~18,,2,,3 
"l- 5 37 

-Jr" ~4q3v2 ~ . . . .  ~q3v3 ~ . . . .  --~q3ul ~v2v3] 

The expressions for the diagrams of Figures 3b and 3c may be written in 
an analogous form as (23) and we obtain the contribution from the diagrams 

. ~ "  "12 

�9 q '  91 

Fig. 6. Three-point counterterm vertex diagram. 



Ward Ident i ty  in Stochast ic  Quan t i za t ion  1493 

q3 

Fig. 7, 

,< 
% 

Three -po in t  counte r te rm t ree-s t ruc ture  d iagrams .  

% 

of  Figures 3a-3c:  

a ( 3 ) a l a 2 a 3 ( r f  
v lv2v  3 k~/1, q 2 ,  q3)  

igaf~,~:3N In / : /x  2 
--  ~ r  2 2 2 lo~r q2q3 q~ + q~ + q~ 

/ 85 ~ .~_ 7 f~ ~ 125 t~ 
X I - - ~ q 2 v  I v2v3 ~4q2v2 v l v  3 ~8-q2v 3 v lv  2 

125 ~ 7 6 + 85 6 " (24) 
~ - q 3 v 2 0 , . q v 3 - - ~ q 3 v 3  v~v2 ~ q 3 v l  l:2V 3) 

The expression for the d iagram illustrated in Figure 4a, is written in the 
fol lowing way: 

G(4a)a la2a3[ , . ,  
/]1~'2P3 t~"/l , q 2 ,  q3)  

12 1 f V(p212) Fa:b  r -q~+q~+q~ q~q~ ( d p ) ~ - - -  ~:r 

1 V' bca a 
l 3 2 Xp2+(p_q,)2+qZ+q~ /3ov3~2 

Accord ing  to (16). (17), and (22) and making an integration over (dp) we 
have 

G ( 4 a ) a : a 2 a  S ig3 Nf  a'%a3 in 12~ 2 
vi~'2~'s [ql ,  q2, q3) -- 2 2 2 5 - - - T 2  16~ q2q3 ql+q2q3 

3 + • [3(q2+q3).36 .. . .  -~(q2 q3).26~,~3] (25) 



1494 Dineykhan and Namsrai 

The diagrams of Figures 4b and 4c are calculated in an analogous way as 
above and we obtain for the diagrams of Figure 4 

G ( 4 ) a  I a 2 a  3 ( 
v, v2v3 k i l l ,  q2,  q3) 

ig3Nff '~% In 12/.~ 2 
16~.2q~q32 qZ+q~+q~ 

139 ~ ..{_3 ~ ._~_ 63 
X kY~q2 v~ v2~, 3 2q2v2Oh~, 2 ~q2v3OVl v2 

63 ~ 3 ~ 39 ~ \ 
+ T6q3~'gOh "3 --2q3~'30h~'a --Tdq3 . . . . . .  ) (26) 

Using the notation in (14) and the summation of (26) and (24), we obtain 
the contributions for the vertex diagram: 

G(ver)a,a2a3[ 
R,~, . . . .  ~,ql, q2 ,  q3) 

_ g2N I n  12v2 1 r-~r T a t a 2 a 3  ..}- z a l a 2 a 3 ]  __ 4 3 7 a l a 2 a 3 ]  (27) 
2 2 2 2..1_~2..1_ 2 L 3 k l  ~'1?22~3 ~1~2~3J 24~'a~'l~2V3/ 

167r q2q3 q l  - , 1 2 -  q3 

The corresponding counterterm diagrams for this vertex are represented in 
Figure 6 and their contributions are written in the following way: 

G(ver)%a2a3E 
CT, vt~2u 3 ~,ql, q2 ,  q3) 

1 1 
-q~+q~+q2 qe2q~[(Zg-1)T"~',~f~+(Z~Zg-1)Z~[~3] (28) 

The tree-structural diagrams represented in Figure 7 also contribute to the 
three-point correlation function. These diagrams are calculated in the same 
way as above and finally we have the result 

G(tr)%%a3{ 
R . . . . . .  3 ~.ql, q2 ,  q3) 

g2N In 12/Z2 1 ~ 13[Ta,a2aaq_wa~a2a3. I 
-- 16 2q2q32 qa+q2+q~2 2 [ - - T ~  . . . . . .  3 . . . .  2"3J 

43 
-~ 24(q~ + q22 + q2) [q, ~, q,,~,( T~ ' ,~  + Z~ ' ,~ )  + q2~2q2,,2 

x ( r ~ ' , ~  + z a ' , ~ )  + q3 ~3 q3,~a( r ~ ' , ~  + Z ~ [ ~ ) ]  + 43 [q2,,2q2o-2 

X ~(Tataza3+za,a2a3"l+ 2~ , 2~3~ q~ (T~'~2~3+Z~'~2~,) ] , ~  3 ,2 ~ j }  (29) 

The corresponding counterterms for these diagrams are represented in 
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Figure 8 and their contribution is given by 

t - -~( t r )a  a a / 1 2 3 ucr,~,~2~(ql, q2, q3) 

1 1 f3(l__ZA)fTa,,~2a3.+.za,a2a3] 
2 2 ~ L /~11~2v3 ~/~1~2v3 d q~+q2+q~ q2q3 

ZA (Z,  - 1) [ ql/]1 qlO" 1 ( T;11~2(l~3 + Zao-lla2a33) + q2 v 2 q2o-2( r ~ l  I ~2~33 q~+q~+q~ 
+ Z ~ [ ~ )  + q3~3q3~3( T ; I ~  + Z~l~;~)] - ZA(Z~ - 1) 

[qz~2q2'~VTO'~+7~'~=o3~+q3"3q3'~3 (T:':=;~ + Z~':~;]) ] ~ (30) • q~ ,--~ . . . .  3 . . . . .  ~, q32 . . . . . .  jj 

Adding (27)-(30), i.e., G~R~+G~c~-+ G~+ G ~ r = 0 ,  inserting the value of 
ZA defined in (20) into it, and equating to zero every tensor coefficients 
separately, we have 

43 In 12/x 2 
Z ~  ) = 1 + 2 4  tolr 

1 13 21~N21n 12/x 2 (31) Z ( 3 ) =  

g 6 

From (20) and (31) we see that Z~ and Za satisfy the Ward identity: 

z g)= z2 

Now let us consider verification of the Ward identity for Zg. For this purpose, 
we consider four-point renormalization. 

. 

" > %  

Fig. 8. 

Q. " ~  nl ~ 

Four-point structural diagrams. 
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5. FOUR-POINT RENORMALIZATION 
Four-point renormalization is defined by the set of  diagrams shown in 

Figures 9-12. If  it is limited to the lower order of g, then the four-point 
correlation function is defined by 

G(1)ata2aaa4[,.~ . . . . . . . .  ~,~/1, q2, q3, q4) 

g4( qt + q2 W q3 + q4) F 1 a~%%a4 
- -  2 2 2 2 ~ Q vlt v2 z~3 v4 ql+q2+q3+q4 Lq2qaq4 

1 ,~2+3+++ ~ 1 d3Ot4alfl2 ~ ] + ~ Q ........ - [ - ~  Q~3 . . . . .  2 + Q~4~g~ 
qlqaq4 qlq2q4 qtq2q3 d 

Oi 0+I 

a) g) c) 

d) e3 ~1~ 

q ' ~  qs 

h) -@ 
% " %  

i) K) 

Fig. 9. Four-point renormalization vertex diagrams. Cyclic permutations for q2, q3, q4. 
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qq~ 
qz 

q' q ' ~  % 

Fig. 10. Four-point renormalization tree-structure diagrams. Cyclic permutations for 

q2, q3, q4. 

qt % 

% 
Fig. 11. Four-point counterterm diagram. 

The corresponding diagranas are represented in Figure 8. This expression 
defines the common structure of the four-point renormalization. The 
expression which defines the four-point correlation function is obtained 
from the Schwinger-Dyson equation (13). The full expression is complicated 
and therefore we do not write it explicitly as was done in the case of the 
three-point correlation function (21). However, we give concrete expressions 
corresponding to separate diagrams. We consider only expressions corre- 
sponding to the diagram shown in Figure 8a, and others will be obtained 

~ q L  

Fig. 12. 

q, qs 

~q 

~ qz 

q, q~ 

Four-point counterterm tree-structure diagrams. Cyclic permutations for q2, q3, q4. 
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by cyclic permutation. First we consider the vertex diagram. The expression 
corresponding to the diagram of Figure 9a is 

G ( 9 a ) a l a 2 a 3 a  4 
1~ 1 v 21' 3 I: 4 

36 1 f V(p212.______~) Fa,btb2a2 
- 2 2 2 2 2- 2 2 ( d p )  p2 , . , ~ 2  q2q3q4 qlWqE+qa+q4 

1 
F b l a 4 a 3 b 2  

X (p+qa+q4)2+p2+q2+qE+2q  2 . .. . .  3.2 

where the F-four-point vertex constant is defined in (22). Using the notation 
(17) and after some algebraic simplifications, we have 

G ( 9 a ) a l a 2 a 3 a  a 
Vl v2173 ~4 

_g4 In 12/d, 2 
- q21+q2+q2+q2 16.n-2q2q23q2 [2Nf,~l,~:,~f,~:4,, 

X (~/~11"3~/"21"4 - -  ~Vl 1"4~1"21:3 ) "~- sa'a2a3a4(2t~ . . . .  ~1.3V4 -~ ~1.11/4~1"2V3 ) 

+ S'h"::3(28~,1"~6~,~+ ~/.,21"4 ~ .... )] (32) 

Here we have introduced the following notation: 

S ata2a3a4 ----fatnmfa2mcfa3cbf a4bn (33) 

Let us consider the diagram of Figure 9b. The corresponding expression 
has the form 

G ( 9 b ) a l a 2 a 3 a  
1.11.21"31'4 

f V(p212 ) _ 24 2 12 2 F~b~l,~22 (dp) p2 
q2 + q2 + q2 + q2 q2q3q4 

X F b'qa4 ( -  .,•1v4 q3--q4--P, q3-t-P, q4) 

1 Fcla3b 2 (__ 
x (p+q3+q4)2+p2+q~+q2+2q  ~ /h,,3,2 q3-P,  q3,P) 

x [(p + q3)2+p2+ q~+2q~+2q24] -1 

The three-gluon vertex F blb2b3 is obtained in (16). After some standard "1~2"3 
calculations we have 

a ( 9 b ) a l a 2 a 3 a  
lJ 11"2 t)3114 

_g4 
- q 2 +  3-- -2  2 2 2 2 2 f a I a 2 n f f l 3 f l 4 n ( ~ v l 1 " 3 t ~  . . . .  - - 8  . . . .  ~ . . . .  ) 

q2+q3+q4 16~ q2q3q4 
~ a l a 2 a 3 a 4 (  9 R R ..L 1 ~  R _L 1 R R 
~ I" ~ u 1" 11"20/:31"4 t 8~1"2/)3 OPt 1"4 / ~u ' i / I  V3 U*1" 2/)4. ] 

sa'%a4a3(9 6,'t,'~8~'31*4+~8,'2~3 6v,1*4 +16 . . . .  6~'2v4) [ (34) + 
J 
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Now consider the diagram of Figure 9c; its corresponding expression has 
the following form 

G(9c)al%a3a 
1Ji v21)3 l"4 

48 1 
2 2 2 q ~ + q . , + q 3 + q 2  2 2 2 q2q3q4 

f . . t  212x v t p  ) Fb,c,a3 (p  
x F~l~,bd~2 (dp) - - - T y - -  ,*,~,,.3 - q3. -P ,  q3) 

1 Tnb2a4c 1 z 

X (P+q4)2+(P  - q3)2 +q3+q4+2q22 2 21~zv4~tl,--q4+P, q4,P) 

X [p2+(p+q4)2+ 2 2 q4 + 2q2 + 2q~t -1 

Carrying out analogous calculations to the above, we find 

G(9c)a a2a3a 4 
P 1 P2 v3 P4 

--2g 4 In 12/* 2 
- -  2 2 2 2 q~ + q2 + q2 + q] 16~r q2q3q4 

x [ N  fa'aznf%a4n( a . . . .  a . . . .  --t~ . . . .  ~v2v3) 

-{- ~ a l a 2 a 4 a 3 ( l l . ~  .~ -I-l .~ .~ "~ 
~" \ 16V~ ' l  P2 t~'/~3 ~'4 ~ 4 ~  IJ/~2 b'4 ] 

~ a l a 2 a 3 a 4 ( l l R  R JI-I~R • "~l 
-l" ~ ,  k 1 6  . . . .  t.~ . . . .  4 ~,v, ,,4~,,,2 ~,3,, j ( 3 5 )  

From (35) and (34) one can see that the structure of the corresponding 
expression for the diagrams depends to a great extent on the permutation 
of internal lines. The diagram of Figure 9d is calculated in an analogous 
way and it is equal to the expression defined in (34). The corresponding 
expression for the diagram of Figure 9c is 

G (9e)ala2a3a 
91 v2 ~3 IJ4 

V r 212" 
24 1 "d " tP ) F b~''~'3 

J 2 2 2 2 2 2 ( P )  "---7---  ~r ql+q2+q3+q24 q2q3q4 

1 
x r~;~,,~=(ql, p - q~, - p )  p 2 + ( p _ q l ) 2 + q ~ +  2 q3+q 2 

X 1 Fq%b 2 (__ 
p2+(p+q2)2+q2  + 2q3q_2q42 2 ~,,.._.~ P q2, q2,P) 
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After a simple calculation we obtain 
G(9e)ata2a3a4 ~11"2113 b'4 

_ g 4  In  12/./2 

- -  2 2 2 2 
q 2 + q ~ + q ~ + q ~  16~- q2q3q4 

x [ Nf""~2"f'~3"4" (a . . . .  ~ . . . .  - ~  . . . .  a . . . .  ) 

c a l a 2 a 3 a a [ 5 R  .~ .~ 3 ~  ~ . ~ _ 1 ~  b,3 ~b.2 b,4 ) -{- ~ rk8 t/ /~t v2 o ' v 3  lJ 4 8 ~ ' v 2  p 3 VlV 4 g ~ v  I 

~ala2aaas[5_.~ ~ ..]_!.~ .~ ..~ 3 r .~ ] l 
"{- L.7 ~8 . . . .  2 l'J I"3 I'~4 80"2/"3 ~ . . . .  8 LJb'l P3 IJb'2/14] J ( 3 6 )  

Other diagrams are calculated in an analogous way. We do not go into the 
details of  the calculation; the results are given in Table II. Here it is necessary 

Table II 

Diagram type Contributions a 

Renormalization vertex 
diagram: Figure 9 
+ (qz, q3, q4) permutations 

Renormalization 
tree-structure diagram: 
Figure 10+(q2, q3, q4) 
permutations 

Counterterm vertex 
diagram: Figure 11 

Counterterm tree-structure 
diagram: Figure 12 
+ (q2, q3, q4) permutations 

1 a a a a  - - C r 3 ~ 3 4  
6 ~ V l  v2/~3~4 

55C 43C 
ala2a3a 4 6 Q )Jl ~2 ~3 z"4 2 2 2 2 " 24(ql + q2 + q3 + qa) 

x r .  ~ oala2a3a4-[-[I 0 oala2a3 a4 
L "-/1 Vl "~ 1 o-1 ~o-1 p2 ~3 ~ 4 --/2 w2 "-/2 o-2 ~ ~ i o-2 v3 w 4 

43C [q2.2q2~, 2 o",~2"3"4 + q3v3q3c~ ()a,a2a~a4 
+ 24 L q---~-- . . . . . . . . .  q----~ . . . . . . . . .  

q4 J 

(Z~ / ZA - 1) 'h%'h",, Q Vl i.,21)3/., 

Z A ( Z . - 1  ) 
4(1 - - Z A ) Q  a,%a3a" vlP2v3v4 q~+ 2 2 2 q2 + q3 + c14 

+ q4~,q4~,Q~[~i~'4] + Zm(Zo - 1) 

[q2v2q2o'2 toala2a3aa_j q3v3q3o'3 a,aea3a 4 
x L q2 . . . . . . . . .  q2 2 Q . . . . . . . .  

+ q4v4q4~4 Qala~3a4 ] 

"The In 122 terms are in units 2 z 2 2 2 2 2 -1. o f [q2q3q4(q l+q2+q3+q4) ]  , h e r e  C = N g 2 / ( 1 6 ~  2) 1nl2/~ z 
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to do permutations between them for the diagrams of Figures 9, 10, and 
I2. The final contribution of  the four-point renormalized and corresponding 
counterterm diagrams of  Figures 9-12 must be equal to zero. Inserting the 
value of ZA defined in (20) under such conditions and equating to zero the 
coefficients of  each tensor separately, one can calculate Z ~  ~ and Z~4~: 

43 ~ 2 Z <4) = 1 + - -  In 12/z 
--~ 24 

(37) 
Z~4)=l  13 g2Nlnl2/x2 

g 6 16~ 2 

From (37) and (31) one can see that the constant g and the parameter of 
gauge fixing o~ satisfy the Ward identity. On the other hand, the Zwanziger 
gauge-fixing term does not break gauge invariance. Here the/3 function for 
g can be defined in the standard way (see Ramond, 1981): 

Og 11 g3N 
/3 Oln/z 3 167r 2 

which corresponds to value of  the Feynman gauge. 
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